7,726 research outputs found

    Electron-Acoustic Phonon Energy Loss Rate in Multi-Component Electron Systems with Symmetric and Asymmetric Coupling Constants

    Full text link
    We consider electron-phonon (\textit{e-ph}) energy loss rate in 3D and 2D multi-component electron systems in semiconductors. We allow general asymmetry in the \textit{e-ph} coupling constants (matrix elements), i.e., we allow that the coupling depends on the electron sub-system index. We derive a multi-component \textit{e-ph}power loss formula, which takes into account the asymmetric coupling and links the total \textit{e-ph} energy loss rate to the density response matrix of the total electron system. We write the density response matrix within mean field approximation, which leads to coexistence of\ symmetric energy loss rate FS(T)F_{S}(T) and asymmetric energy loss rate FA(T)F_{A}(T) with total energy loss rate F(T)=FS(T)+FA(T) F(T)=F_{S}(T)+F_{A}(T) at temperature TT. The symmetric component F_{S}(T) isequivalenttotheconventionalsinglesubsystemenergylossrateintheliterature,andintheBlochGru¨neisenlimitwereproduceasetofwellknownpowerlaws is equivalent to the conventional single-sub-system energy loss rate in the literature, and in the Bloch-Gr\"{u}neisen limit we reproduce a set of well-known power laws F_{S}(T)\propto T^{n_{S}},wheretheprefactorandpower, where the prefactor and power n_{S}dependonelectronsystemdimensionalityandelectronmeanfreepath.For depend on electron system dimensionality and electron mean free path. For F_{A}(T)weproduceanewsetofpowerlawsFA(T)TnA we produce a new set of power laws F_{A}(T)\propto T^{n_{A}}. Screening strongly reduces the symmetric coupling, but the asymmetric coupling is unscreened, provided that the inter-sub-system Coulomb interactions are strong. The lack of screening enhances FA(T)F_{A}(T) and the total energy loss rate F(T)F(T). Especially, in the strong screening limit we find FA(T)FS(T)F_{A}(T)\gg F_{S}(T). A canonical example of strongly asymmetric \textit{e-ph} matrix elements is the deformation potential coupling in many-valley semiconductors.Comment: v2: Typos corrected. Some notations changed. Section III.C is embedded in Section III.B. Paper accepted to PR

    Pseudo Jahn-Teller Effect In The Origin Of Enhanced Flexoelectricity

    Get PDF
    The controversy between the theory and experiment in explaining the origin of enhanced flexoelectricity is removed by taking into account the pseudo Jahn-Teller effect (PJTE) which, under certain conditions, creates local dipolar distortions of dynamic nature, resonating between two or more equivalent orientations. The latter become nonequivalent under a strain gradient thus producing enhanced flexoelectricity: it is much easier to orient ready-made dipoles than to polarize an ionic solid. For BaTiO3, the obtained earlier numerical data for the adiabatic potential energy surface in the space of dipolar displacements in the Ti centers were used to estimate the flexoelectric coefficient integral in the paraelectric phase in a one-dimensional model with the strain gradient along the [111] direction: integral = -0.43 X 10(-6) Cm-1. This eliminates the huge contradiction between the experimental data of integral similar to mu Cm-1 for this case and the theoretical predictions (without the PJTE) of 3-4 orders-of-magnitude smaller values. Enhanced flexoelectricity is thus expected in solids with a sufficient density of centers that have PJTE induced dipolar instabilities. It explains also the origin of enhanced flexoelectricity observed in other solids, noticeable containing Nb perovskite centers which are known to have a PJTE instability, similar to that of Ti centers. The SrTiO3 crystal as a virtual ferroelectric in which the strain gradient eases the condition of PJTE polar instability is also discussed. (C) 2015 AIP Publishing LLC.Institute for Theoretical Chemistr

    Galactic cluster winds in presence of a dark energy

    Full text link
    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating center, in presence of the uniform Dark Energy (DE). The antigravity of DE is enlightening the outflow and make the outflow possible at smaller initial temperature, at the same density. The main property of the wind in presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind could lead to the formation of a highest energy cosmic rays.Comment: 13 pages, 7 figure
    corecore